

TEXAS TECH UNIVERSITY"

How do people judge the capabilities of a robot?

Trevor McIntyre

Dr. Keith Jones' Lab

5/2/13

How can we tell what a robot can do?

There is a need for humans to understand what robots can and cannot do

- Urban search-and-rescue personnel need to understand whether a robot can fit through an opening in rubble
- Members of a military unit will need to understand the loadbearing capabilities of an assistive robot
- A user will need to understand whether their personal service robot can perform a given task

Humans can accurately judge the capabilities of other humans in performing certain actions

Mark, 2007; Ramenzoni et al., 2005, 2008, 2010; Stoffregen et al., 1999

Jones, Schmidlin, & Wheeler (2012)

- Demonstrated that people are similarly accurate about robots
- Indicated participants used wheel height in their judgments of a wheeled-robot's capabilities, but there are some issues with this conclusion

Robot Wheels

How do people judge the capabilities of a robot?

Purpose

We want to replicate the finding that people can accurately judge the capabilities of a robot

We seek to understand whether their judgments are influenced by properties that determine a robot's capabilities

 Extending Jones, Schmidlin, and Wheeler (2012), we want to see whether people use task-relevant properties in their judgments How do people judge the capabilities of a robot?

Method

Method

Participants

- 80 undergraduate students
 - Recruited from General Psychology subject pool

Robot

- Self-balancing
- Two sets of wheels
 - Short: 1.96 inches
 - Tall: 2.99 inches

Method (Short robot)

.16, .31, .47, .63, .79, .94, 1.10, 1.26, 1.42, 1.57, 1.69 & 1.85 inches

Range of Step Heights

Method (Tall robot)

.16, .31, .47, .63, .79, .94, 1.10, 1.26, 1.42, 1.57, 1.69 & 1.85 inches Range of Step Heights

Method

Dependent Variable

- Participants' judgments about whether the robot could climb the step
 - Given by clicking "Yes" or "No" buttons on the screen

Hypotheses & Predictions

- 1. People will be sensitive to the relative action capabilities of robots
 - Participants' perceived stair-climbing boundaries for the short robot will be lower than for the tall robot
- 2. People will utilize a task-relevant property of the robot when making judgments about robots
 - Participants' boundaries scaled in terms of the robots' wheel sizes for the short robot will be higher than those for the tall robot

- 3. People will make accurate judgments about the capabilities of robots
 - Participants' perceived stair-climbing boundaries for each robot will not differ when compared to that robot's actual capability

How do people judge the capabilities of a robot?

Results

For each step height, responses were tallied across the eight trial blocks

The tallies were converted into:

- Perceived stair-climbing boundaries
- Scaled perceived stair-climbing boundaries

Participants' perceived stair-climbing boundaries for the short robot will be lower than for the tall robot

Participants' boundaries scaled in terms of the robots' wheel heights for the short robot will be higher than those for the tall robot

Participants' perceived stair-climbing boundaries for each robot will be accurate when compared to that robot's actual capability

How do people judge the capabilities of a robot?

Conclusions

Conclusions

Participants . . .

- Were sensitive to the relative capabilities of the short and tall robots
- Showed a sensitivity to wheel height, but this effect may have been found due to some inaccuracy
- Were not able to accurately judge the absolute capabilities of the short and tall robots

Practical Implications

- People have the ability to judge robots' capabilities in relative terms, but not as accurately as we had previously thought
- People may have difficulty working with a robot partner
 - e.g. a military unit may misperceive whether their assistive robot can traverse certain terrain or overcome certain obstacles
 - This effect may be negated with training paradigms

How do people judge the capabilities of a robot?

Future Directions

Future Directions

- Further research should attempt to explore what mechanisms are involved in the accurate perception of capabilities
 - Is learning a factor?
 - Is viewing the robot beforehand necessary?
 - Do changes in anthropomorphism change the pattern of results?

Questions?

