

The Effects of Physiological Self-Regulation Training using LaRC MindShift Invention Technology on Users' Psychophysiology and Cognitive Performance

Brittany N. Neilson

Physiological Self-Regulation

- Traditionally used for medical and clinical applications
- Shown efficacious for treatment of various disorders (e.g., ADHD) and reduction of stress
- "Better able to manage their cognitive resources" (Prinzel, Pope, & Freeman, 2002)
- Recent integration into gaming systems

Physiological Self-Regulation Gaming Technology

- User experience adapted to physiological responses, which can be influenced by:
 - cognition
 - motivation
 - emotion
- Potentially useful and engaging method for physiological self-regulation training
 - Used to improve physiological responses to stress, fatigue, cognitive performance, and behavioral functioning

Relevance to NASA's Mission

System Factors

Operator Factors

- Airspace demand
- Interface demand
- Other related task demands

Task Load

Work Load

- Skill
- Strategy
- Experience

Higher-order cognition & stress

MindShift Invention Technology

- Created by Alan Pope and Chad Stephens, NASA Langley (LaRC patent case, LAR 18144-1)
- With MindShift, a person is able to play offthe-shelf Nintendo[™] Wii[™] games enhanced with biofeedback

MindShift Invention Technology

Game Performance

MindShift Invention Technology: Link Crossbow Training Game

MindShift Invention Technology: Link Crossbow Training Game

Physiological Modulation: Pulse Photoplethysmography

- PP is a passive, noninvasive technology that reads the heartbeat from a sensor on the earlobe
- Studies have related heart rate to physical exertion, stress and anxiety

MindShift Invention Technology: Wii Sports Golf Game

MindShift Invention Technology: Wii Sports Golf Game

Physiological Modulation: Electroencephalography

- EEG is a passive, noninvasive technology that reads electrical activity of the brain from sensors on the scalp
- Studies have related activity of the brain to attention, engagement, stages of sleep

Purpose of Investigation

Self-regulation training

Cognitive performance

Perceived workload

Hypotheses

Cognitive performance

Perceived workload

Method

- 11 participants (6 men and 5 women) were recruited
 - Exclusionary criteria: experience with BCI/ biofeedback technology used in study, history of neurological disorder, TBI, cardiovascular disorder, or smoking.
 - ≥ 18 years of age
 - Roughly equal representation of gender
- Approved by NASA LaRC IRB

Last session will include debriefing after experimental session

Pilot Simulation Task: MATB-II (Comstock & Arnegard, 1992)

Preliminary Analyses

Session	FOM from MATB-II	Self-reported WL
1	<i>M</i> = 54.9 <i>SD</i> = 5.424	<i>M</i> = 63.6 <i>SD</i> = 16.545
4	<i>M</i> = 64.3 <i>SD</i> = 1.356	<i>M</i> = 29.0 <i>SD</i> = 5.657

Approximately 48 participants should be recruited based on 80% power, a medium effect size (d = .25), and an error probability of 5% with two tails (Erdfelder, Faul, & Buchner, 1996).

Implications for Applications of Proposed Research

 To enable aerospace operators to hone their stress management and attention skills in physiologicallyaugmented leisure activities engaged in off-the-job in order to positively affect their on-the-job performance (Pope & Prinzel, 2005).

Implications for Applications of Proposed Research

 Applicability to skill training on manually controlled critical tasks, such as UAV teleoperation, enabling these cognitive skills to be trained concurrently with manual skills.

Thank you for your attention!

Questions can be addressed at this time.

For further questions, contact me: Brittany Neilson at brittany.n.neilson@ttu.edu

Creators of NASA MindShift Technology: Alan Pope at alan.t.pope@nasa.gov Chad Stephens at chad.l.stephens@nasa.gov